7º Ano 

Módulo 1

Os conceitos de múltiplos e divisores de um número natural estendem-se para o conjunto dos números inteiros. Quando tratamos do assunto múltiplos e divisores, referimo-nos a conjuntos numéricos que satisfazem algumas condições. Os múltiplos são encontrados após a multiplicação por números inteiros, e os divisores são números divisíveis por um certo número.

Devido a isso, encontraremos subconjuntos dos números inteiros, pois os elementos dos conjuntos dos múltiplos e divisores são elementos do conjunto dos números inteiros. Para entender o que são números primos, é necessário compreender o conceito de divisores.

Múltiplos de um número

Sejam a e b dois números inteiros conhecidos, o número a é múltiplo de b se, e somente se, existir um número inteiro k tal que a = b · k. Desse modo, o conjunto dos múltiplos de a é obtido multiplicando a por todos números inteiros, os resultados dessas multiplicações são os múltiplos de a.

Por exemplo, listemos os 12 primeiros múltiplos de 2. Para isso temos que multiplicar o número 2 pelos 12 primeiros números inteiros, assim:

 

2 · 1 = 2

2 · 2 = 4

2 · 3 = 6

2 · 4 = 8

2 · 5 = 10

2 · 6 = 12

2 · 7 = 14

2 · 8 = 16

2 · 9 = 18

2 · 10 = 20

2 · 11 = 22

2 · 12 = 24

Portanto, os múltiplos de 2 são:

 

M(2) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}

 

Observe que listamos somente os 12 primeiros números, mas poderíamos ter listado quantos fossem necessários, pois a lista de múltiplos é dada pela multiplicação de um número por todos os inteiros. Assim, o conjunto dos múltiplos é infinito.

Para verificar se um número é ou não múltiplo de outro, devemos encontrar um número inteiro de forma que a multiplicação entre eles resulte no primeiro número. Veja os exemplos:

 

→ O número 49 é múltiplo de 7, pois existe número inteiro que, multiplicado por 7, resulta em 49.

49 = 7 · 7

 

→ O número 324 é múltiplo de 3, pois existe número inteiro que, multiplicado por 3, resulta em 324.

324 = 3 · 108

 

→ O número 523 não é múltiplo de 2, pois não existe número inteiro que, multiplicado por 2, resulte em 523.

523 = 2 · ?

 

 

 

 

 

 

Múltiplos de 4

Como vimos, para determinar o múltiplos do número 4, devemos multiplicar o número 4 por números inteiros. Assim:

4 · 1 = 4

4 · 2 = 8

4 · 3 = 12

4 · 4 = 16

4 · 5 = 20

4 · 6 = 24

4 · 7 = 28

4 · 8 = 32

4 · 9 = 36

4 · 10 = 40

4 · 11 = 44

4 · 12 = 48

...

Portanto, os múltiplos de 4 são:

M(4) = {4, 8, 12, 16, 20. 24, 28, 32, 36, 40, 44, 48, … }

 

Múltiplos de 5

De maneira análoga, temos os múltiplos de 5.

5 · 1 = 5

5 · 2 = 5

5 · 3 = 15

5 · 4 = 20

5 · 5 = 25

5 · 6 = 30

5 · 7 = 35

 

Logo, os múltiplos de 5 são: M(5) = {5, 10, 15, 20, 25, 30 , 35, 40, 45, … }

 

Divisores de um número

Sejam a e b dois números inteiros conhecidos, vamos dizer que b é divisor de a se o número b for múltiplo de a, ou seja, a divisão entre b e a é exata (deve deixar resto 0).

Veja alguns exemplos:

 

→ 22 é múltiplo de 2, então, 2 é divisor de 22.

→ 63 é múltiplo de 3, logo, 3 é divisor de 63.

→ 121 não é múltiplo de 10, assim, 10 não é divisor de 121.

 

Para listar os divisores de um número, devemos buscar os números que o dividem. Veja:

– Liste os divisores de 2, 3 e 20.

 

D(2) = {1, 2}

D(3) = {1, 3}

D(20) = {1, 2, 4, 5, 10, 20}

 

Observe que os números da lista dos divisores sempre são divisíveis pelo número em questão e que o maior valor que aparece nessa lista é o próprio número, pois nenhum número maior que ele será divisível por ele.

 

 

Por exemplo, nos divisores de 30, o maior valor dessa lista é o próprio 30, pois nenhum número maior que 30 será divisível por ele. Assim:

D(30) = {1, 2, 3, 5, 6, 10, 15, 30}

 

 

Propriedade dos múltiplos e divisores

Essas propriedades estão relacionadas à divisão entre dois inteiros. Observe que quando um inteiro é múltiplo de outro, é também divisível por esse outro número.

Considere o algoritmo da divisão para que possamos melhor compreender as propriedades.

 

N = d · q + r, em que q e r são números inteiros.

 

Lembre-se de que N é chamado de dividendo; d, de divisor; q, de quociente; e r, de resto.

 

→ Propriedade 1: A diferença entre o dividendo e o resto (N – r) é múltipla do divisor, ou o número d é divisor de (N – r).

 

→ Propriedade 2: (N – r + d) é um múltiplo de d, ou seja, o número d é um divisor de (N – r + d).

 

Veja o exemplo:

 

– Ao realizar a divisão de 525 por 8, obtemos quociente q = 65 e resto r = 5. Assim, temos o dividendo N = 525 e o divisor d = 8. Veja que as propriedades são satisfeitas, pois (525 – 5 + 8) = 528 é divisível por 8 e:

528 = 8 · 66

 

Números primos

Os números primos são aqueles que possuem como divisor em sua listagem somente o número 1 e o próprio número. Para verificar se um número é primo ou não, um dos métodos mais triviais é fazer a listagem dos divisores desse número. Caso apareça números a mais que 1 e o número em questão, este não é primo.

 

→ Verifique quais são os números primos entre 2 e 20. Para isso, vamos fazer a lista dos divisores de todos esses números entre 2 e 20.

 

D(2) = {1, 2}

D(3) = {1, 3}

D(4) = {1, 2, 4}

D(5) = {1, 5}

D(6) = {1, 2, 3, 6}

D(7) = {1, 7}

D(8) = {1, 2, 4, 8}

D(9) = {1, 3, 9}

D(10) = {1, 2, 5, 10}

D(11) = {1, 11}

D(12) = {1, 2, 3, 4, 6, 12}

D(13) = {1, 13}

D(14) = {1, 2, 7, 14}

D(15) = {1, 3, 5, 15}

D(16) = {1, 2, 4, 16}

D(17) = {1, 17}

D(18) = {1, 2, 3, 6, 9, 18}

D(19) = {1, 19}

D(20) = {1, 2, 4, 5, 10, 20}

 

 

Assim, os números primos entre 2 e 20 são:

{2, 3, 5, 7, 11, 13, 17 e 19}

 

Observe que o conjunto é de alguns dos primeiros primos, essa lista continua. Veja que quanto maior é o número, mais difícil torna-se dizer se ele é primo ou não.

 

FRAÇÕES

Na matemática, as frações correspondem a uma representação das partes de um todo. Ela determina a divisão de partes iguais sendo que cada parte é uma fração do inteiro.

Como exemplo podemos pensar numa pizza dividida em 8 partes iguais, sendo que cada fatia corresponde a 1/8 (um oitavo) de seu total. Se eu como 3 fatias, posso dizer que comi 3/8 (três oitavos) da pizza.

Tipos de Frações

Fração Própria

São frações em que o numerador é menor que o denominador, ou seja, representa um número menor que um inteiro. Ex: 2/7

 

Fração Imprópria

São frações em que o numerador é maior, ou seja, representa um número maior que o inteiro. Ex: 5/3

Fração Aparente

São frações em que o numerador é múltiplo ao denominador, ou seja, representa um número inteiro escrito em forma de fração. Ex: 6/3= 2

Fração Mista

É constituída por uma parte inteira e uma fracionária representada por números mistos. Ex: 1 2/6. (um inteiro e dois sextos)

Obs: Há outros tipos de frações, são elas: equivalente, irredutível, unitária, egípcia, decimal, composta, contínua, algébrica.

Operações com Frações

Adição

Para somar frações é necessário identificar se os denominadores são iguais ou diferentes. Se forem iguais, basta repetir o denominador e somar os numeradores.

Contudo, se os denominadores são diferentes, antes de somar devemos transformar as frações em frações equivalentes de mesmo denominador.

 

Neste caso, calculamos o Mínimo Múltiplo Comum (MMC) entre os denominadores das frações que queremos somar, esse valor passa a ser o novo denominador das frações.

Além disso, devemos dividir o MMC encontrado pelo denominador e o resultado multiplicamos pelo numerador de cada fração. Esse valor passa a ser o novo numerador.

Exemplos:

a parêntese direito espaço 5 sobre 9 mais 2 sobre 9 igual a 7 sobre 9 b parêntese direito espaço 1 quinto mais 2 sobre 3 igual a numerador 3.1 mais 5.2 sobre denominador 15 fim da fração igual a numerador 3 mais 10 sobre denominador 15 fim da fração igual a 13 sobre 15 c parêntese direito espaço 1 terço mais 1 meio mais 2 sobre 5 igual a numerador 10.1 mais 15.1 mais 6.2 sobre denominador 30 fim da fração igual a numerador 10 mais 15 mais 12 sobre denominador 30 fim da fração igual a 37 sobre 30

Subtração

Para subtrair frações temos que ter o mesmo cuidado que temos na soma, ou seja, verificar se os denominadores são iguais. Se forem, repetimos o denominador e subtraímos os numeradores.

Se forem diferentes, fazemos os mesmos procedimentos da soma, para obter frações equivalentes de mesmo denominador, aí sim podemos efetuar a subtração.

Exemplos

a parêntese direito espaço 3 sobre 8 menos 2 sobre 8 igual a 1 sobre 8 b parêntese direito espaço 6 sobre 7 menos 1 terço igual a numerador 3.6 espaço menos 7.1 sobre denominador 21 fim da fração igual a numerador 18 menos 7 sobre denominador 21 fim da fração igual a 11 sobre 21

Saiba mais em Adição e Subtração de Frações.

Multiplicação

A multiplicação de frações é feita multiplicando os numeradores entre si, bem como seus denominadores.

Exemplos

a parêntese direito espaço 3 sobre 4.1 quinto igual a numerador 3.1 sobre denominador 4.5 fim da fração igual a 3 sobre 20 b parêntese direito espaço 7 sobre 8.3 sobre 5 igual a 21 sobre 40 c parêntese direito espaço 1 meio.1 terço.5 sobre 7 igual a numerador 1.1.5 sobre denominador 2.3.7 fim da fração igual a 5 sobre 42

Divisão

Na divisão entre duas frações, multiplica-se a primeira fração pelo inverso da segunda, ou seja, inverte-se o numerador e o denominador da segunda fração.

 

Números decimais são números que possuem vírgula, por exemplo, 2,35; 1,2; 0,25. Ao lermos esses números falamos o seguinte, por exemplo:

1,5 = temos o costume de ler “um vírgula cinco”, mas matematicamente está incorreto. Para fazer a leitura corretamente de um número decimal devemos saber algumas definições.

Todo número que é escrito na forma decimal pode ser transformado em fração, isso é através da decomposição do número decimal transformamos-os em fração, veja como:

5,2----- 5 é a parte inteira do número e 2 é a parte decimal, então se somarmos a parte inteira com a decimal resultamos no número 5,2.

5 + 0,2 = 5,2. O número 0,2 continua decimal, então para transformá-lo em fração vamos reparar que ele não possui parte inteira, apenas parte decimal a qual é composta por apenas um número, então 0,2 é o mesmo que  2 .10

Podemos então dizer que 5,2 = 5 + 2 , com base nessa soma dizemos que a leitura de 5,2 ficará assim: cinco inteiros e dois décimos.

Veja alguns exemplos abaixo:

2,1 = dois inteiros e um décimo.

0,36 = trinta e seis centésimos.

2,36 = dois inteiros e trinta e seis centésimos.

14,6 = quatorze inteiros e seis décimos.

0,123 = cento e vinte três milésimos.